15,968 research outputs found

    How to write a compelling (materials) science paper

    No full text

    Evolutionary approach to overcome initialization parameters in classification problems

    Get PDF
    Proceeding of: 7th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2003 MaĆ³, Menorca, Spain, June 3ā€“6, 2003.The design of nearest neighbour classifiers is very dependent from some crucial parameters involved in learning, like the number of prototypes to use, the initial localization of these prototypes, and a smoothing parameter. These parameters have to be found by a trial and error process or by some automatic methods. In this work, an evolutionary approach based on Nearest Neighbour Classifier (ENNC), is described. Main property of this algorithm is that it does not require any of the above mentioned parameters. The algorithm is based on the evolution of a set of prototypes that can execute several operators in order to increase their quality in a local sense, and emerging a high classification accuracy for the whole classifier

    A Burgess-like subconvex bound for twisted L-functions

    Get PDF
    Let g be a cuspidal newform (holomorphic or Maass) of arbitrary level and nebentypus, X a primitive character of conductor q, and s a point on the critical line Rs = 1/2. It is proved that L(g circle times chi, s) 0 is arbitrary and theta = 7/64 is the current known approximation towards the RamannJan-Petersson conjecture (which would allow theta = 0); moreover, the dependence on s and all the parameters of g is polynomial. This result is an analog of Burgess' classical subconvex bound for Dirichlet L-functions. In Appendix 2 the above result is combined with a theorem of Waldspurger and the adelic calculations of Baruch-Mao to yield an improved uniform upper bound for the Fourier coefficients of holomorphic half-integral weight cusp forms

    Lattice dynamics and electron-phonon coupling in Sr2RuO4

    Full text link
    The lattice dynamics in Sr2_2RuO4_4 has been studied by inelastic neutron scattering combined with shell-model calculations. The in-plane bond-stretching modes in Sr2_2RuO4_4 exhibit a normal dispersion in contrast to all electronically doped perovskites studied so far. Evidence for strong electron phonon coupling is found for c-polarized phonons suggesting a close connection with the anomalous c-axis charge transport in Sr2_2RuO4_4.Comment: 11 pages, 8 figures 2 table

    The Mason Test: A Defense Against Sybil Attacks in Wireless Networks Without Trusted Authorities

    Full text link
    Wireless networks are vulnerable to Sybil attacks, in which a malicious node poses as many identities in order to gain disproportionate influence. Many defenses based on spatial variability of wireless channels exist, but depend either on detailed, multi-tap channel estimation - something not exposed on commodity 802.11 devices - or valid RSSI observations from multiple trusted sources, e.g., corporate access points - something not directly available in ad hoc and delay-tolerant networks with potentially malicious neighbors. We extend these techniques to be practical for wireless ad hoc networks of commodity 802.11 devices. Specifically, we propose two efficient methods for separating the valid RSSI observations of behaving nodes from those falsified by malicious participants. Further, we note that prior signalprint methods are easily defeated by mobile attackers and develop an appropriate challenge-response defense. Finally, we present the Mason test, the first implementation of these techniques for ad hoc and delay-tolerant networks of commodity 802.11 devices. We illustrate its performance in several real-world scenarios

    Processing optimisation, mechanical properties and microstructural evolution during selective laser melting of Cu-15Sn high-tin bronze

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Selective laser melting (SLM), as a novel additive manufacturing technique, has attracted increasing attention in copper alloys. In this research, to investigate forming processing and attendant mechanical properties of high-tin bronze in SLM, a statistical relationship between processing parameters (laser power, scanning speed and hatch space) and density of Cu-15Sn bronze in SLM was established using an experimental approach with response surface method and analysis of variance. As such, nearly fully-dense SLM Cu-15Sn bronze specimens were firstly manufactured whose reasonable microstructural evolution and mechanical properties were investigated before and after annealing and compared with QSn15-1-1 (GB/T 5231-2012) drawing specimens. It is found that the SLM Cu-15Sn specimens present the significantly fine grain microstructures that consist of cellular and dendritic structures. The ultimate tensile strength varies from ~661 MPa to ~545 MPa, the elongation at break from ~7.4% to ļ¼ž20% and the Vickers hardness ranges from ~212 HV 0.3 to ~168 HV 0.3 for SLM Cu-15Sn specimens after annealing, which are generally superior to those of QSn15-1-1 specimens. In addition, it has been proposed that the dominated strengthening mechanism of SLM Cu-15Sn parts has transformed from fine-grain to solid solution strengthening after annealing.The authors acknowledge the National High-tech Research and Development Program of China (863 Program: 2015AA042501) for financial support of this work

    Tick-borne encephalitis virus induces chemokine RANTES expression via activation of IRF-3 pathway.

    Get PDF
    BACKGROUND: Tick-borne encephalitis virus (TBEV) is one of the most important flaviviruses that targets the central nervous system (CNS) and causes encephalitides in humans. Although neuroinflammatory mechanisms may contribute to brain tissue destruction, the induction pathways and potential roles of specific chemokines in TBEV-mediated neurological disease are poorly understood. METHODS: BALB/c mice were intracerebrally injected with TBEV, followed by evaluation of chemokine and cytokine profiles using protein array analysis. The virus-infected mice were treated with the CC chemokine antagonist Met-RANTES or anti-RANTES mAb to determine the role of RANTES in affecting TBEV-induced neurological disease. The underlying signaling mechanisms were delineated using RANTES promoter luciferase reporter assay, siRNA-mediated knockdown, and pharmacological inhibitors in human brain-derived cell culture models. RESULTS: In a mouse model, pathological features including marked inflammatory cell infiltrates were observed in brain sections, which correlated with a robust up-regulation of RANTES within the brain but not in peripheral tissues and sera. Antagonizing RANTES within CNS extended the survival of mice and reduced accumulation of infiltrating cells in the brain after TBEV infection. Through in vitro studies, we show that virus infection up-regulated RANTES production at both mRNA and protein levels in human brain-derived cell lines and primary progenitor-derived astrocytes. Furthermore, IRF-3 pathway appeared to be essential for TBEV-induced RANTES production. Site mutation of an IRF-3-binding motif abrogated the RANTES promoter activity in virus-infected brain cells. Moreover, IRF-3 was activated upon TBEV infection as evidenced by phosphorylation of TBK1 and IRF-3, while blockade of IRF-3 activation drastically reduced virus-induced RANTES expression. CONCLUSIONS: Our findings together provide insights into the molecular mechanism underlying RANTES production induced by TBEV, highlighting its potential importance in the process of neuroinflammatory responses to TBEV infection
    • ā€¦
    corecore